ARC-AGI Solver: Fine-Tuning Qwen with LoRA and Augmented Inference

Minseo Kim* ! Yeonjae Kim*' Jeonghun Park*' Hyunwoo Lee* !

Abstract

We present a pipeline that fine-tunes a large pre-
trained language model (Qwen-4B) on ARC-AGI
tasks using efficient LoRA adapters and data aug-
mentation. The input-output grid pairs in each
task are serialized as tokens and concatenated
into a few-shot prompt, enabling the model to
learn grid transformations from examples. At
inference time, we construct a prompt from the
three given examples of a task (few-shot prompt-
ing), optionally perform test-time tuning on these
examples, and generate multiple output candi-
dates via the model. The final output is ob-
tained by aggregating these candidates using a
simple grid-wise majority vote. This approach
leverages pretrained reasoning capabilities, LORA
fine-tuning, and augmentation to solve the ARC-
AGI tasks. Our repositories are publicly avail-
able at https://github.com/minseo25/
arc—agi-solver.

1. Introduction

The Abstraction and Reasoning Corpus (ARC) is a bench-
mark of visual reasoning tasks. Each task consists of several
input—output pairs of colored grids, and the goal is to infer
the transformation rule to apply to a new input grid. In
our setting, a synthetic ARC-AGI dataset of 380 tasks is
provided, with 300 tasks available for training and the rest
reserved for evaluation. For each test task, the system is
given three example input—output grid pairs and one tar-
get input; the objective is to predict the correct output grid
following the pattern illustrated by the examples.

Recent ARC-AGI approaches have largely abandoned ex-
haustive DSL-based program synthesis (Ouellette, 2024) in
favor of direct transduction using pretrained models. These
methods typically apply a brief test-time training step on the
few available examples, combine multiple outputs via sim-
ple ensembling (e.g. majority voting or confidence-based

“Equal contribution 'Department of Computer Science and
Engineering, Seoul National University.

Copyright 2025 by the author(s).

Public
ARC Datasets

| = |
Base Model ‘Finetune‘ Model

- trained
Flnetune‘ Model

1
1
1
1
1
1
1
1
1
1
'
1
1

Test time Y '
1
1
1
1
1
1
1
1
1
1
1
1
1
1

__

Figure 1. Overview of our full pipeline, including training and
inference stages.

tie-breaking), and some even incorporate spatially aware
architectures to natively model 2D grid structure.

In this work, we adopt a pretrained Qwen-4B fine-tuned
via LoRA on serialized grid examples. At inference, we
optionally perform a brief test-time adaptation and then
ensemble multiple augmented predictions with grid-wise
majority voting. This approach unites efficient parameter
adaptation, few-shot prompting, and robust ensembling to
generalize effectively to unseen ARC tasks.

2. Method

Our approach consists of a parameter-efficient fine-tuning
phase and an inference strategy incorporating task-specific
adaptation and ensembling. Below, we outline the training
setup and inference procedure in detail.

2.1. Training

We fine-tune the Qwen-4B model—a 4-billion-parameter
language model from Qwen—on the ARC-style training
tasks using Low-Rank Adaptation (LoRA). This allows us
to adapt a large model efficiently with significantly fewer
trainable parameters.

https://github.com/minseo25/arc-agi-solver
https://github.com/minseo25/arc-agi-solver

TEAM3 FINAL PROJECT REPORT

Task23

:1|2|3|4[5|6|7I8|9|10|11|12|13]14|15|16|17[18|19|ZOE [

train_dataset |:| examples

E1|2]3|4|5|6|718|

|5|6|7|8|9|10|11|12|

Task5

D eval_dataset |:| datapoint

[] label

|9|10|11|12|13|14|15|16|

|:| masked label

shuffle

Task152

|13|14|15|16|17|18|19|20|

prompt |x1|v1|x2|v2| . |X7|Y7|x8|y8|

’ Transform for augmentation ‘

Figure 2. Dataset Construction Pipeline

2.1.1. MODEL AND CONFIGURATION

We use the Qwen/Qwen3-4B Hugging Face model as our
base. LoRA adapters with rank = 16 and scaling factor
o = 16 are inserted into all attention projection modules
and MLP layers, specifically targeting g_proj, k_proj,
v_proj, o_proj,gate_proj, up_-proj, down_proj.

To further reduce the vocabulary size and enhance output
accuracy, we replace the input embedding and LM
head with smaller, optimized weights. We shrink these
weights by restricting the vocabulary to digits (0-9), line de-
limiters (\n), and a selected set of special formatting tokens.
Additionally, to fine-tune exclusively the LM head with-
out altering the embedding weights, we clone the existing
weights of input embedding specifically for the LM
head and fine-tune them with a learning rate lower than
that used for LoRA adapters. All other model parameters
remain frozen during fine-tuning.

2.1.2. OPTIMIZATION AND HYPERPARAMETERS

We train the model using the 8-bit optimizer with a learning
rate of 5 x 1075 for LoRA and 1 x 10~° for the LM head.
Training is performed on a single 12GB GPU with gradient
accumulation (batch size 4), cosine scheduling, FP16 mixed
precision, and early stopping. Both adapter and LM head
weights are saved at regular checkpoints.

2.1.3. TRAINING OBJECTIVE AND DATA

Input and Label Construction The model is trained on a
prompt-completion objective. Each training instance con-
sists of some examples serving as context and one target
query whose output the model predicts. Only tokens corre-
sponding to the target output contribute to the loss compu-
tation, while input tokens and context example outputs are
masked out.

Dataset Preparation and Augmentation We use 300 offi-
cial ARC training tasks, randomly partitioned into training
and evaluation sets. For each task, multiple datapoints are
generated using a sliding-window strategy with overlapping
context examples (as depicted in Figure 2). Each datapoint

in Figure 2 comprises training pairs and one test pair. To
enhance data diversity during training, the following aug-
mentations are applied:

* Color shuffling: Non-zero color tokens are randomly
permuted during training to prevent overfitting to spe-
cific color-ID mappings.

* Geometric transforms: Random horizontal flips and
rotations by multiples of 90 degrees are applied to the
grids.

e Prompt shuffling: The order of the three context ex-
amples is randomized to mitigate positional biases.

2.1.4. TRAINING WITH JOINT LOSS

In the setup described above, each task is defined by multi-
ple examples plus a single test input and its corresponding
test output. Conventionally, one uses teacher forcing(Lamb
et al., 2016) and computes the loss only on the test output.
Here, however, we treat the examples themselves as addi-
tional “test-like” data with limited context. Accordingly,
we train with a Joint loss that supervises not only the test
output but also the outputs of all preceding examples. Be-
cause the very first example has no prior context, we apply
a mask to its output so that it does not contribute to the
loss. This strategy enables the model to learn from multiple
contextually diverse data points within each task, and by
increasing the number of examples, we can cover more data
in fewer training steps.

2.2. Inference

At test time, the trained model is used to solve new ARC
tasks using few-shot prompting and optional task-specific
tuning.

2.2.1. PROMPT CONSTRUCTION

For each test task, we construct a prompt by serializing
the three provided input-output examples, followed by the
test input grid and an empty “Output:” field. The format

TEAM3 FINAL PROJECT REPORT

strictly adheres to the template used during training, with
grid delimiters and special tokens to guide the model. The
prompt includes a fixed preamble string and formatting
tokens to help the model identify each part of the example.
This prompt is then tokenized and fed into the model for
autoregressive decoding.

2.2.2. TEST-TIME TRAINING (TTT)

Test-time training (TTT)(Sun et al., 2020) is a technique
that adapts the model on the given task at test time. To
avoid overfitting on the same support examples—and thus
preserve the ability to predict the test input’s output—we
generate multiple variants of the original task rather than
training on it repeatedly. Section 2.1.3 describes three such
augmentation methods: random geometry, random color,
and random shuffling. We observe that different combina-
tions of these augmentations lead to varying TTT perfor-
mance. During TTT, we freeze the language-model head
and update only the LoRA adapters. Once inference on
the current task is complete, we discard the task-specific
LoRA parameters and restore the original adapters. Finally,
to respect GPU limitations and overall time constraints, we
limit the number of augmented tasks per TTT session and
terminate TTT after a preset duration before proceeding
directly to inference.

2.2.3. CANDIDATE GRID GENERATION AND SELECTION

In order to improve inference robustness, we first apply
random geometry transformations to the given task, gener-
ating multiple augmented versions of the prompt. For each
augmented prompt, we run the model to produce not only
the output grid but also the per-token logits and the overall
sequence probability. This yields a set of candidate grids,
each paired with its score information, which we then use
to make our final prediction.

The available grid-selection policies are as follows:

* Naive Voting: Perform a simple majority vote across
the full candidate grids.

e Grid-wise Selection: Choose the candidate whose
total log-probability (sum of its token logits) is highest.

* Cell-wise Argmax: For each cell position, select the
value coming from the candidate with the highest logit
at that cell.

* Voted Grid-wise (ours): First identify the most com-
mon grid(s) via voting, then break any ties by compar-
ing total sequence probabilities.

Among these, we focus on the voted grid-wise policy, which
achieved the best performance in our evaluation. A more
detailed explanation is given below in Algorithm 1.

Algorithm 1 Voted Grid-wise with Augmentation and Tie-
Breaking
Input: Test prompt P, model M, augmentation functions
{Ar}i)
Output: Final prediction grid G
for k =1to K do
Gy, logpr < M(Py)
G AL (Gr)
end for ‘
C + list of G with counts
T < top grids with highest count in C
if |7] = 1 then
G+« T[]
else
G« arg maxq,c7 log p;
end if
return G

/I Apply k-th augmentation
/Il Inference + log-probability
/I Reverse augmentation

By combining geometry-based augmentation with sequence-
level scoring, we reduce the variance introduced by random
decoding noise and make our final predictions more stable
and accurate.

3. Evaluation

We first constructed the training dataset following the proce-
dure described in Section 2 and used it to train our model.
During training, we applied early stopping based on the
validation loss. Once training was complete, we evaluated
the final model’s accuracy on the training dataset. To boost
our performance metrics, we then applied three different
techniques.

3.1. Eval Joint Loss Model

In our initial setup, we trained the model with teacher forc-
ing using three support examples and a test input X to predict
the test output Y, computing the loss on only one example
per step. Under this configuration, our local evaluation
scores fell in the 30—40 point range. Next, by switching to a
joint loss over all support examples during training, we saw
performance improve to roughly 50-60 points. Keeping the
same number of epochs but increasing the support set size to
seven examples further boosted scores into the 60—70 point
range. Finally, we extended training for many more epochs
in this fixed environment, saving a checkpoint at every step.

3.2. Eval with TTT

Before finalizing the model, we performed local evaluation
by applying test-time training (TTT) using parameters from
intermediate checkpoints. We fixed the total number of

TEAM3 FINAL PROJECT REPORT

tasks at 12 but generated them in four different ways. The
results are shown in Table 1. Based on these experiments,
we selected the combination of random geometry with ring
order for our final TTT setup.

Table 1. Local evaluation scores under different TTT strategies
with 12 fixed tasks. A indicates the change relative to the no-TTT
baseline.

TTT Strategy Score A
No TTT 68 -
Random (geo, color, shuffling) 62 -6
Random (geo, color) + ring shuffling 64 —4
Random geo + ring shuffling 71 +3

3.3. Eval with Candidate Generation

To improve robustness during inference, we apply test-time
augmentation—specifically geometric transformations such
as horizontal flips and 90-degree rotations—to generate mul-
tiple transformed variants of each input. We then perform
inference on each variant and reverse the transformations
(de-augmentation) to obtain a set of candidate outputs. We
evaluate several selection strategies: choosing the most fre-
quent candidate (84 score), selecting the one with the high-
est log-probability (81 score), aggregating high-confidence
cells across candidates (77 score), and majority voting with
log-probability tie-breaking, which achieves the best perfor-
mance (86 score). This approach overall enhances stability
and accuracy by reducing variance across generations.

3.4. Performance Improvements Across Methods

We report performance improvements as we progressively
incorporated our techniques. Starting from a baseline
trained with teacher forcing and single-example loss, we
introduced joint loss computation over support examples,
which significantly improved training effectiveness. Increas-
ing the support set size further boosted accuracy, and ex-
tended training epochs yielded additional gains. In the infer-
ence stage, applying test-time augmentation and robust can-
didate selection strategies (e.g., log-probability tie-breaking)
led to further improvements. Figure 3 visualizes this tra-
jectory, demonstrating how each method cumulatively con-
tributed to a final score of 81. All reported scores are based
on official leaderboard evaluations, reflecting performance
on the held-out ARC test set.

4. Conclusion

In this paper, we demonstrated that enriching our training
regime with data augmentation and a joint-loss objective
substantially boosts model learning on few-shot ARC tasks.

ARC-AGI Score Improvement

81
80 A
e
g 72
» 70 4
- 64
—
S 60
=
5}
B 50
[}
—
4043
T T T T
Base Joint Loss TTT Candidate Generation
Method

Figure 3. Progressive leaderboard score improvements across
methods. Each step reflects a cumulative addition of training
or inference strategies described in Section 3.

By supervising not only the test output but also all support
examples, our joint loss formulation enables the model to
capture richer contextual dependencies and yields a marked
improvement in training-time effectiveness.

At inference time, we further increase accuracy through two
complementary strategies. First, test-time training (TTT)
applies geometric transformations alongside ring-order per-
mutations of the support examples—while keeping color
fixed—to adapt more effectively to each new task. Second,
our candidate-generation pipeline, combined with a voted
grid-wise selection policy that breaks ties via total sequence
log-probability, yields the strongest and most stable final
predictions. Together, these methods achieve an overall
leaderboard score of 81, setting a new benchmark for robust
few-shot ARC performance.

5. Contribution

Minseo Organized the team’s Notion page, conducted lit-
erature searches for ARC-AGI papers, implemented data
augmentation pipelines, trained models and performed hy-
perparameter tests.

Yeonjae Built the initial model baseline, ported and inte-
grated The Architects framework, performed TTT-related
tests and experiments, and oversaw model training.

Jeonghun Integrated the user interfaces, refactored the
codebase to adopt Hydra, applied data augmentation tech-
niques, executed a range of tests and experiments, and
trained the models.

Hyunwoo Managed the team repository and model zoo,
implemented the TTT components, trained the models, and
prepared the project report.

TEAM3 FINAL PROJECT REPORT

References

Lamb, A. M., Goyal, A., Zhang, Y., Zhang, S., Courville,
A. C., and Bengio, Y. Professor forcing: A new algo-
rithm for training recurrent networks. In Advances in
Neural Information Processing Systems 29 (NIPS 2016),
pp. 4601-4609, 2016.

Ouellette, S. Towards efficient neurally-guided program in-
duction for ARC-AGI. arXiv preprint arXiv:2411.17708,
2024. doi: 10.48550/arXiv.2411.17708.

Sun, Y., Wang, X., Liu, Z., Miller, J., Efros, A. A., and
Hardt, M. Test-time training with self-supervision for
generalization under distribution shifts. In Proceedings of
the 37th International Conference on Machine Learning
(ICML), pp. 9229-9248, 2020.

